
Week 5 - Friday



 What did we talk about last time?
 GUIs
 JOptionPane









 JOptionPane was fine for creating a limited range of 
dialogs

 If we want to make a whole window, we use JFrame
 Java uses the term frame instead of window, probably 

because of concerns about lawsuits from Microsoft
 But when you hear JFrame, think "main window"



 When designing a JFrame, there are two meaningful 
options:
 Creating a JFrame object and adding stuff to it inside of some other 

class
 Extending JFramewith your own class, making your class a 
JFrame plus more

 It doesn't really matter which one you pick
 To keep things simple, we'll create a JFrame object instead 

of extending the JFrame class



 To create a JFrame, we will 
usually call its constructor that 
takes a String, giving it a 
title

 Then, we have to make it 
visible so that we can see it

JFrame frame = new JFrame("A Window");
frame.setVisible(true);



 The code from the previous slide will make a JFrame and make it visible
 However, it will probably be so small that you won't even notice it
 To deal with this problem, you should set its size, ideally before you make 

it visible
 Its setSize()method takes two int values: width and height in pixels

 Eventually, once we add widgets to a JFrame, we can simply call its 
pack() method, which will make it take up the amount of space it needs 
to fit everything

JFrame frame = new JFrame("A Window");
frame.setSize(500, 400);
frame.setVisible(true);



 Next, you'll notice that closing the window doesn't end the program
 The little red square on the Eclipse Console is still clickable, meaning that the 

program is running
 By default, closing the window by clicking its X only hides the window
 By calling the setDefaultCloseOperation(), we can make it so 

that the default operations is dispose (getting rid of the window)

 Many books suggest passing in JFrame.EXIT_ON_CLOSE, but you 
should not!

 Doing so will kill the rest of your program like System.exit()

JFrame frame = new JFrame("A Window");
frame.setSize(500, 400);
frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
frame.setVisible(true);



 To use a JFrame you must:
 Create a JFrame object
 Set its size (either directly or by putting widgets on it and then calling 
pack())
 Set its default close operation to dispose
 Make it visible

 Now that we've got a window, we can put widgets on it!





 Widget is a generic term for a wide range of GUI controls
 Buttons
 Labels (allowing us to put text or images on a GUI)
 Text fields
 Text areas (like text fields but larger)
 Menus
 Checkboxes
 Radio buttons
 Lists
 Combo boxes
 Sliders



 A button you can click on is provided by the JButton class
 A JButton is usually created with text or an image
 You'll need to make JButtons with images for Project 2

 Just creating the JButton doesn't do anything
 You have to add it to a JFrame (or other container) to see it
 Right now, we're just creating the buttons
 Next week, we'll learn how to add actions to them

JButton button = new JButton("Push me!");



 Once you've created a JButton, you can 
add it to a JFrame by calling the add()
method on the JFrame

 All GUI containers have an add() method 
that allows us to add a widget to it

JFrame frame = new JFrame("A Window");
frame.setSize(500, 400);
frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
JButton button = new JButton("Push me!");
frame.add(button);
frame.setVisible(true);



 By default, a JFrame uses a layout manager called the BorderLayout that has five region
 Calling the simplest add()method adds a widget to the center, which stretches to take up all 

available space
 You can specify that you're adding to:
 BorderLayout.CENTER
 BorderLayout.NORTH
 BorderLayout.SOUTH
 BorderLayout.EAST
 BorderLayout.WEST

JButton centerButton = new JButton("Push me!");
frame.add(centerButton, BorderLayout.CENTER);
JButton northButton = new JButton("Cold");
frame.add(northButton, BorderLayout.NORTH);
JButton southButton = new JButton("Hot");
frame.add(southButton, BorderLayout.SOUTH);
JButton eastButton = new JButton("Sunrise");
frame.add(eastButton, BorderLayout.EAST);
JButton westButton = new JButton("Sunset");
frame.add(westButton, BorderLayout.WEST);



 You can also make a JButton
with an image instead of text

 To do so, you create an 
ImageIcon and pass that to 
the constructor of the 
JButton

 You'll need the path to an image

JButton bowieButton = new JButton(new ImageIcon("bowie.jpg"));
frame.add(bowieButton, BorderLayout.CENTER);



 A JLabel is like a button you 
can't click

 Its constructors work just like 
the JButton ones

 It allows you to display text or 
an image

JLabel nameLabel = new JLabel("David Bowie");
JLabel bowieLabel = new JLabel(new ImageIcon("bowie.jpg"));
frame.add(nameLabel, BorderLayout.NORTH);
frame.add(bowieLabel, BorderLayout.CENTER);



 A JTextField allows a user to enter 
a (short) amount of text

 Usually, you'll need a JLabel to tell 
the person what they should enter

 The example is ugly because the 
JLabel and the JTextField don't 
fill the 500 x 400 JFrame

JLabel messageLabel = new JLabel("Enter the magic words:");
JTextField magicField = new JTextField();
frame.add(messageLabel, BorderLayout.NORTH);
frame.add(magicField, BorderLayout.SOUTH);



 A JTextField is for entering small 
pieces of information
 Name
 Address
 Telephone number

 For larger texts, we can use a 
JTextArea

JLabel storyLabel = new JLabel("Write a story:");
JTextArea storyArea = new JTextArea();
frame.add(storyLabel, BorderLayout.NORTH);
frame.add(storyArea, BorderLayout.CENTER);





 When you add a widget to a JFrame (or to a JPanel), its layout 
manager determines how it will be arranged

 There are lots of layout managers, but it's worth mentioning four:
 BorderLayout
 GridLayout
 FlowLayout
 BoxLayout

 Note that we won't talk about BoxLayout, but you should look it up if you get 
serious about Swing GUIs

 BoxLayoutmakes it easy to arrange widgets in a horizontal or vertical line, 
with different amount of spacing between widgets



 BorderLayout is the default layout for JFrame
 When you add widgets, you can specify the location as one 

of five regions:
 BorderLayout.NORTH stretches the width of the container 

on the top
 BorderLayout.SOUTH stretches the width of the container 

on the bottom
 BorderLayout.EAST sits on the right of the container, 

stretching to fill all the space between NORTH and SOUTH
 BorderLayout.WEST sits on the left of the container, 

stretching to fill all the space between NORTH and SOUTH
 BorderLayout.CENTER sits in the middle of the container 

and stretches to fill all available space
 If you don't specify where you're adding a widget, it adds to 

CENTER
 If you add more than one widget to a region, the new one 

replaces the old
 Unused regions disappear



 GridLayout allows you to create a 
grid with a specific number of rows and 
columns

 All the cells in the grid are the same 
size

 As you add widgets, they fill each row

frame.setLayout(new GridLayout(4, 5));
for(int row = 0; row < 4; ++row)
for(int column = 0; column < 5; ++column)

frame.add(new JButton("" + (row * 5 + column + 1)));







 More on layout
 Action listeners



 Keep reading Chapter 15
 Keep working on Project 2


	COMP 2000
	Last time
	Questions?
	Project 2
	JFrame
	JFrame
	Creating or extending
	Creating a JFrame
	setSize()
	setDefaultCloseOperation()
	Recap
	Widgets
	Widgets
	JButton
	Adding a JButton to a JFrame
	Adding to different parts of a JFrame
	Displaying an icon on a JButton
	JLabel
	JTextField
	JTextArea
	Layout Managers
	Layout managers
	BorderLayout
	GridLayout
	Quiz
	Upcoming
	Next time…
	Reminders

