
Week 5 - Friday



 What did we talk about last time?
 GUIs
 JOptionPane









 JOptionPane was fine for creating a limited range of 
dialogs

 If we want to make a whole window, we use JFrame
 Java uses the term frame instead of window, probably 

because of concerns about lawsuits from Microsoft
 But when you hear JFrame, think "main window"



 When designing a JFrame, there are two meaningful 
options:
 Creating a JFrame object and adding stuff to it inside of some other 

class
 Extending JFramewith your own class, making your class a 
JFrame plus more

 It doesn't really matter which one you pick
 To keep things simple, we'll create a JFrame object instead 

of extending the JFrame class



 To create a JFrame, we will 
usually call its constructor that 
takes a String, giving it a 
title

 Then, we have to make it 
visible so that we can see it

JFrame frame = new JFrame("A Window");
frame.setVisible(true);



 The code from the previous slide will make a JFrame and make it visible
 However, it will probably be so small that you won't even notice it
 To deal with this problem, you should set its size, ideally before you make 

it visible
 Its setSize()method takes two int values: width and height in pixels

 Eventually, once we add widgets to a JFrame, we can simply call its 
pack() method, which will make it take up the amount of space it needs 
to fit everything

JFrame frame = new JFrame("A Window");
frame.setSize(500, 400);
frame.setVisible(true);



 Next, you'll notice that closing the window doesn't end the program
 The little red square on the Eclipse Console is still clickable, meaning that the 

program is running
 By default, closing the window by clicking its X only hides the window
 By calling the setDefaultCloseOperation(), we can make it so 

that the default operations is dispose (getting rid of the window)

 Many books suggest passing in JFrame.EXIT_ON_CLOSE, but you 
should not!

 Doing so will kill the rest of your program like System.exit()

JFrame frame = new JFrame("A Window");
frame.setSize(500, 400);
frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
frame.setVisible(true);



 To use a JFrame you must:
 Create a JFrame object
 Set its size (either directly or by putting widgets on it and then calling 
pack())
 Set its default close operation to dispose
 Make it visible

 Now that we've got a window, we can put widgets on it!





 Widget is a generic term for a wide range of GUI controls
 Buttons
 Labels (allowing us to put text or images on a GUI)
 Text fields
 Text areas (like text fields but larger)
 Menus
 Checkboxes
 Radio buttons
 Lists
 Combo boxes
 Sliders



 A button you can click on is provided by the JButton class
 A JButton is usually created with text or an image
 You'll need to make JButtons with images for Project 2

 Just creating the JButton doesn't do anything
 You have to add it to a JFrame (or other container) to see it
 Right now, we're just creating the buttons
 Next week, we'll learn how to add actions to them

JButton button = new JButton("Push me!");



 Once you've created a JButton, you can 
add it to a JFrame by calling the add()
method on the JFrame

 All GUI containers have an add() method 
that allows us to add a widget to it

JFrame frame = new JFrame("A Window");
frame.setSize(500, 400);
frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
JButton button = new JButton("Push me!");
frame.add(button);
frame.setVisible(true);



 By default, a JFrame uses a layout manager called the BorderLayout that has five region
 Calling the simplest add()method adds a widget to the center, which stretches to take up all 

available space
 You can specify that you're adding to:
 BorderLayout.CENTER
 BorderLayout.NORTH
 BorderLayout.SOUTH
 BorderLayout.EAST
 BorderLayout.WEST

JButton centerButton = new JButton("Push me!");
frame.add(centerButton, BorderLayout.CENTER);
JButton northButton = new JButton("Cold");
frame.add(northButton, BorderLayout.NORTH);
JButton southButton = new JButton("Hot");
frame.add(southButton, BorderLayout.SOUTH);
JButton eastButton = new JButton("Sunrise");
frame.add(eastButton, BorderLayout.EAST);
JButton westButton = new JButton("Sunset");
frame.add(westButton, BorderLayout.WEST);



 You can also make a JButton
with an image instead of text

 To do so, you create an 
ImageIcon and pass that to 
the constructor of the 
JButton

 You'll need the path to an image

JButton bowieButton = new JButton(new ImageIcon("bowie.jpg"));
frame.add(bowieButton, BorderLayout.CENTER);



 A JLabel is like a button you 
can't click

 Its constructors work just like 
the JButton ones

 It allows you to display text or 
an image

JLabel nameLabel = new JLabel("David Bowie");
JLabel bowieLabel = new JLabel(new ImageIcon("bowie.jpg"));
frame.add(nameLabel, BorderLayout.NORTH);
frame.add(bowieLabel, BorderLayout.CENTER);



 A JTextField allows a user to enter 
a (short) amount of text

 Usually, you'll need a JLabel to tell 
the person what they should enter

 The example is ugly because the 
JLabel and the JTextField don't 
fill the 500 x 400 JFrame

JLabel messageLabel = new JLabel("Enter the magic words:");
JTextField magicField = new JTextField();
frame.add(messageLabel, BorderLayout.NORTH);
frame.add(magicField, BorderLayout.SOUTH);



 A JTextField is for entering small 
pieces of information
 Name
 Address
 Telephone number

 For larger texts, we can use a 
JTextArea

JLabel storyLabel = new JLabel("Write a story:");
JTextArea storyArea = new JTextArea();
frame.add(storyLabel, BorderLayout.NORTH);
frame.add(storyArea, BorderLayout.CENTER);





 When you add a widget to a JFrame (or to a JPanel), its layout 
manager determines how it will be arranged

 There are lots of layout managers, but it's worth mentioning four:
 BorderLayout
 GridLayout
 FlowLayout
 BoxLayout

 Note that we won't talk about BoxLayout, but you should look it up if you get 
serious about Swing GUIs

 BoxLayoutmakes it easy to arrange widgets in a horizontal or vertical line, 
with different amount of spacing between widgets



 BorderLayout is the default layout for JFrame
 When you add widgets, you can specify the location as one 

of five regions:
 BorderLayout.NORTH stretches the width of the container 

on the top
 BorderLayout.SOUTH stretches the width of the container 

on the bottom
 BorderLayout.EAST sits on the right of the container, 

stretching to fill all the space between NORTH and SOUTH
 BorderLayout.WEST sits on the left of the container, 

stretching to fill all the space between NORTH and SOUTH
 BorderLayout.CENTER sits in the middle of the container 

and stretches to fill all available space
 If you don't specify where you're adding a widget, it adds to 

CENTER
 If you add more than one widget to a region, the new one 

replaces the old
 Unused regions disappear



 GridLayout allows you to create a 
grid with a specific number of rows and 
columns

 All the cells in the grid are the same 
size

 As you add widgets, they fill each row

frame.setLayout(new GridLayout(4, 5));
for(int row = 0; row < 4; ++row)
for(int column = 0; column < 5; ++column)

frame.add(new JButton("" + (row * 5 + column + 1)));







 More on layout
 Action listeners



 Keep reading Chapter 15
 Keep working on Project 2


	COMP 2000
	Last time
	Questions?
	Project 2
	JFrame
	JFrame
	Creating or extending
	Creating a JFrame
	setSize()
	setDefaultCloseOperation()
	Recap
	Widgets
	Widgets
	JButton
	Adding a JButton to a JFrame
	Adding to different parts of a JFrame
	Displaying an icon on a JButton
	JLabel
	JTextField
	JTextArea
	Layout Managers
	Layout managers
	BorderLayout
	GridLayout
	Quiz
	Upcoming
	Next time…
	Reminders

